A new model for Machine Comprehension via multi-perspective context matching and bidrectional attention flow

نویسندگان

  • Amirata Ghorbani
  • Nima Hamidi
چکیده

To answer a question about a context paragraph, there needs to be a complex model for interactions between these two. Previous Machine Comprehension (MC) where either not large enough to train end-to-end deep neural networks, or not hard to learn. Recently, after the release of SQuAD dataset dataset, several adept models have been proposed for the task of MC. In this work we try to combine the ideas of two state-of-the-art models (BiDAF and MPCM) with our new ideas to obtain a new model for question answering task. Promising experimental results on the test set of SQuAD encourages us to continue working on the proposed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation and New Variants Exploration of the Multi-Perspective Context Matching Deep Neural Network Model for Machine Comprehension

This project explores the multi-perspective context matching method for the task of reading comprehension using the SQuAD data set. The original six layer model presents an interesting system for exploring deep learning architectures and their implementations on Tensorflow.The first step was to design an efficient implementation of this complex model on Tensorflow. The second step, and the aim ...

متن کامل

Reading Comprehension with SQuAD

The SQuAD dataset provides a reading comprehension task, with (question, answer, context) pairs. This paper attempts to develop a model to predict the answer for a given question, context pair. In a model inspired by ”Multi-Perspective Context Matching for Machine Comprehension” by Wang et al, this paper achieves 0.47 F1 score on a validation set.

متن کامل

Machine Question and Answering

Machine comprehension, an unsolved problem in machine learning, enables a machine to process a passage and answer associated questions with a high level of accuracy that matches human performance. We use the SQuAD dataset, which simplifies the question-answer process, where the answer is defined by the starting and ending indices of its location in the context paragraph. In this paper, we explo...

متن کامل

Multi-Perspective Context Matching for Machine Comprehension

Previous machine comprehension (MC) datasets are either too small to train endto-end deep learning models, or not difficult enough to evaluate the ability of current MC techniques. The newly released SQuAD dataset alleviates these limitations, and gives us a chance to develop more realistic MC models. Based on this dataset, we propose a Multi-Perspective Context Matching (MPCM) model, which is ...

متن کامل

Bidirectional Attention Flow for Machine Comprehension

Machine comprehension (MC), answering a query about a given context paragraph, requires modeling complex interactions between the context and the query. Recently, attention mechanisms have been successfully extended to MC. Typically these methods use attention to focus on a small portion of the context and summarize it with a fixed-size vector, couple attentions temporally, and/or often form a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017